8 Water Reduction Fixtures and Detergent Choice

AAA rated plumbing and low phosphate, low sodium detergents are recommended to conserve limited water supplies and maintain optimal performance of the irrigation, soil and plant systems. In addition, "Insinkerator" style kitchen garbage disposal units should be avoided as they increase water consumption and nutrient and BOD concentrations of household effluent.

Water saving devices are recommended to reduce the volume of water that needs to be applied to the site, and thus reduce the risk of any runoff. The National Water Conservation Labelling Scheme indicates that the average family can save about 50 KL per year by adopting AAA rated hardware in their showers, kitchen and laundry.

Using the following water saving devices, the average household's water consumption can be reduced from 900 litres to 750 litres per day:

- dual flush 6/3 L pan and cistern (average household savings of 93 L/day)^[7];
- AAA rated shower heads to limit flow to 6 L/minute^[19]
- AAA rated dishwasher (not more than 18 litres for each wash cycle)^[8];
- AAA rated washing machine (not more than 22 litres per dry kg of clothes)**;

Low sodium detergents ensure that the soil structure, and hence its absorption capacity, is maintained as close as possible to a natural condition. Low phosphorus detergents ensure that optimum plant growth is maintained and that excess phosphorus is not leached into the environment. Detergents which are low in both sodium and phosphorus should be chosen from the table in Appendix F which has been produced by Lanfax Laboratories, Armidale. Sodium in laundry powders is used as a filler. Therefore, in general, liquid detergents are preferred over powder.

Source: Independent Pricing and Regulation Tribunal of NSW (1996), Water Demand Management:
A Framework for Option Assessment

8 Source: Sydney Water Demand Management Strategy, October 1995

9 Mitigation Measures

9.1 Protection of Effluent Management Area

During future house construction the proposed land application areas should be fenced off to exclude access by heavy construction machinery. This will avoid compaction and degradation of the site's soils and will help maintain the existing groundcover to reduce the erosion hazard. Furthermore, stock must not be allowed access to effluent management areas.

9.2 Landscaping

 $\langle \hat{} \rangle$

Lawn and/or garden beds should be established in all land application areas prior to commencement of irrigation. This is important to reduce the erosion hazard, to help prevent effluent runoff from the site and to maximise the uptake of water and nutrients. To facilitate nutrient removal lawns and gardens should be cut regularly and all clippings removed from the site. Planting of low growing trees and shrubs will also help with the uptake of water and nutrients. A list of suitable plants for land application areas is contained in Appendix G (DLG 1998).

10 Conclusions

Morse McVey & Associates have undertaken site and soil investigations of lands at the southern end of Hawthorne Rd, Bargo for the purpose of assessing site suitability for a proposed rural residential subdivision. Our investigations focus on proposed one acre lots where onsite effluent management is proposed. We recommend that all proposed allotments can effectively manage domestic wastewater onsite, based on the following:

- (i) installation of an approved secondary wastewater treatment system, such as an aerated wastewater treatment system (AWTS), to treat all household wastewater from the residence;
- (ii) disposal of treated wastewater in a properly sized, designed and managed irrigation area. Based on a standard 5-bedroom residence, a total irrigation area of 820 square metres is required. The total irrigation area must be broken up into at least two separate zones with manual or automatic switching valves used to switch between the different areas. The irrigation design must ensure even and widespread dispersal of effluent throughout the entire irrigation area;
- (iii) spray irrigation may only be adopted on category 1 sites, i.e sites that have more than 1500 m² of land available. Lots with less than 1500 m² must use subsurface irrigation. To some extent this will not be known until a site specific onsite wastewater management report is done for each lot. However all lots have enough land to fit the required 860 m² as shown in figures 2 to 6;
- (iv) all irrigation areas must be well vegetated either with lawn or established garden beds prior to commencing effluent disposal – a landscape plan must be prepared;
- (v) proposed effluent management areas must be fenced during construction activities to prevent compaction and soil degradation by construction equipment;
- (vi) installation of water saving devices to conserve water and minimise overloading of the irrigation area;
- (vii) selection of low phosphorus, low sodium detergents and cleaning compounds to reduce the levels of chemical contaminants in wastewater. Generally, liquid detergents are preferred over powders; and
- (viii) no additional wet weather storage is required.

11 References

: }

Wollondilly Shire Council (1998). Draft Local Approvals Policy for New Installations of On-Site Management Systems for Residential Dwellings.

Department of Land and Water Conservation (1997). *Groundwater Vulnerability Map*, *Hawkesbury - Nepean Catchment*. Department of Land and Water Conservation, Parramatta.

Department of Local Government (1998). Environment and Health Protection Guidelines: Onsite Sewage Management for Single Households. February 1998.

Hazelton, P.A. & Murphy, B.W. eds. (1992). What Do All the Numbers Mean? A Guide for the Interpretation of Soil Test Results. Department of Conservation and Land Management (incorporating the Soil Conservation Service of NSW). Sydney, New South Wales.

Hazelton, P.A. & Tille, P.J. (1990). Soil Landscapes of the Wollongong-Port Hacking 1:100 000 Sheet. Soil Conservation Service of NSW, Sydney.

Standards Australia/Standards New Zealand (2000). *AS/NZS* 1547:2000 On-site Domestic Wastewater Management. Standards Australia/Standards New Zealand. Strathfield, New South Wales.

12 Appendixes

Appendix A:	Site & Soil Assessment Rating for Onsite Systems
Appendix B:	Water and nutrient balance calculations
Appendix C:	Soil Borelogs
Appendix D:	Laboratory Soil Test Results
Appendix E:	Irrigation Options
Appendix F:	Laundry Detergent Research
Appendix G:	Vegetation Suitable for Land Application Areas

P0036701-R-01.wpd

• · •

1 P

()

()

4

Appendix A - Site Assessment: Rating for On-site Systems

Adapted from: Environment and Health Protection Guidelines: Onsite Sewage Management for Single Households (Department of Local Government, 1998)

SITE FEATURE	RELEVANT SYSTEM(S)	MINOR LIMITATION	MODERATE LIMITATION	MAJOR LIMITATION	RESTRICTIVE FEATURE
Flood potential	All land application systems	Rare, above 1 in 20 year flood contour		Frequent, below 1 in 20 year flood contour	Transport of wastewater off-site
	All treatment systems	Vents, openings, electrical components above 1 in 100 year flood contour	×	Vents, openings, & electrical components below 1 in 100 year flood contour	Transport of wastewater off-site, Systems failure & electrocution hazard
Exposure	All land application systems	High sun & wind exposure		Low sun & wind exposure	Poor evapotranspiration
Slope %	Surface irrigation	0-6	6-12	>12	Run-off, erosion
	Sub-surface irrigation	0-10	10-20	>20	Run-off, erosion
	Absorption system	0-10	10-20	>20	Run-off, erosion
Landform	All systems	Hill crests, convex side slopes, plains	Concave side slopes, footslopes	Drainage plains & incised channels	Groundwater pollution hazard
Run-on & upslope seepage	All land application systems	None - low	Moderate	High - diversion not practical	Transport of wastewater off -site
Erosion potential	All land application systems	No signs of erosion potential present		Signs of erosion, e.g. rills, mass movement, slope failure, present	Soil degradation & transport, system failure
Site Drainage	All land application systems	No visible signs of surface dampness		Visible signs of surface dampness, such as moisture- tolerant vegetation (seges & ferns), soaks & springs	Groundwater pollution hazard Resurfacing hazard
Fill	All systems	No fill	Fill present		Subsidence. Variable permeability
Buffer distances	All land application systems	(see report)			Health & pollution risks
Land area	All systems	Area is available		Area is not available	Health & pollution risks
Rocks & rock outcrops (% of land surface containing rocks > 200mm dia)	All land application systems	<10%	10-20%	>20%	Limits system performance

Wastewater Management Report

SOIL FEATURE	RELEVANT SYSTEM(S)	MINOR LIMITATION	MODERATE LIMITATION	MAJOR LIMITATION	RESTRICTIVE FEATURE
Geology/ Regolith	All land application systems			Major geological discontinuities, fractured, ect.	Groundwater pollution hazard
Depth to bedrock or hardpan (m)	Surface irrigation Sub-surface irrigation	>1.0	0.5-1.0	<0.5	Groundwater pollution hazard Resurfacing hazard
	Absorption system	>1.5	1.0-1.5 ²	<1.0	Potential for groundwater pollution
Soil permeability Category ³	Surface irrigation Sub-surface irrigation	2b, 3 & 4	2a, 5	1 & 6	Excessive run-off, waterlogging, percolation
	Absorption system ⁴	3 & 4		1,2,5 & 6	
Coarse fragments (%)	All land application systems	0-20	20-40	>40	May restrict plant growth, affect trench installation
Bulk density (g/cm³)	All land application systems				Restricts plant growth, indicator of permeability
Sandy Loam Loam & Clay Loam, Clay	<1.8 <1.6 <1.4			>1.8 >1.6 >1.4	
pH _{CaCl}	All land application systems	>6.0	4.5-6.0		Reduces optimum plant growth
Electrical conductivity (dS/m)	All land application systems	<4	4-8	>8	Excessive salt may restrict plant growth
Sodicity (exchangeable sodium percentage) ⁵	Surface irrigation Sub-surface irrigation (0-40cm)	0-5	5-10	>10	Potential for structural degradation
	Absorption system (0-1.2m)				
Cation exchange capacity (cmol'/kg) (0-40cm)	Surface irrigation Sub-surface irrigation	>15	5-15	<5	Unable to hold plant nutrients
Phosphorus sorption (kg/ha) (0-100cm for irrigation) (100cm below intended base of trench)	All land application systems	>6000	2000-6000	<2000	Unable to immobilise any excess P
Modified Emerson Aggregate Test	All land application systems	Class 3, 4, 5, 6, 7 & 8	Class 2	Class 1	Potential for structural degradation

Soil Assessment: Rating for On-site Systems

Appendix B - Water and Nutrient Balance Calculations

Table A1 : Minimum Area Method Weter Balance and Wet Weather Storage Calculations

 \bigcirc

 \bigcirc

Buxton

1015 Nares/day Rainfall Station: Expected wastewater quantity: 5 bedroom/7 person et 145L per person

1015 litres/dey Expected wastewater

			I Jul Aug Sep) Oct Nov Dec Total	AAA
			Dec	
			Nov	K.
			Oct	
			Sep	k
			Aug	
			INC	
			5	k
			May	ŀ
			Apr	k
			Mar	ŀ
			Feb	
_		,	Jan	
C101	28		Unite	
VOAY	mm/w/k		Symbols Formula Units Jan Peb Mer Apr May	The second se
(0)	(R)		Symbols	and the owner of the owner own
Uesign Wastewater How	Design Percolation Rate		Parameter	
-	_		-	4

202	897.2	557.0			198.4	480.0	2656.4		897.2	018.7	018.7	2056.4			
5	63.0	250.0	0.8		00.00	24.0 1			63.0	81.0 S	168.2		-92.8	29.9	
20	80.2	75.0	0.8		40.0	20.0	60.0		80.2	79.8	68.2	248.4	-11.6	22.7	
	70.3 81.8 39.9 37.9 31.7 25.0 27.0 42.2 51.6 80.2 63.0	100.0 75.0 55.0 65.0 87.0 110.0 150.0 175.0 250.0	0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8		38.6 45.5 60.9 77.0 120.0 140.0 200.0 1196.	24.0 1	244.0 2	-	51.6	168.7 148.4 150.1 138.6 126.8 144.5 157.9 154.8 192.4 179.8 261.0 2018.7	168.2 166.2 168.2 166.2 168.2 168.2 168.2 168.2 168.2 168.2 168.2 168.2	236.5 249.9 206.1 206.1 196.9 193.2 195.2 210.4 219.8 246.4 231.2	24.2	- C.MCI	
00	42.2	10.0 1	0.7		0.77	20.0	0.78	-	42.2	54.8	68.2	210.4	13.4	58.5	
1 10	27.0	87.0 1	0.7		00.9	24.0 1	84.9	-	27.0	57.9	98.2	85.2 3	10.3	45.0	
10	25.0	96.0	0.7		45.5	24.0 1	69.5 1		25.0	44.5 1	68.2	93.2	23.7	34.7	
20	31.7	55.0	0.7		38.5	20.0 1	58.5 1		31.7	26.8 1	68.2 1	96.9	41.4	11.0 1	
10	37.8	75.0	0.7		62.5	124.0	176.5		37.9 1	138.6	168.2	208.1	29.6	69.6	
3	39.9	100.0	0.7		20.0	120.0	190.0		39.9	150.1	168.2	208.1	18.1	39.9	
5	81.8	130.0	0.8		104.0	124.0	228.0		81.6 1	148.4	166.2	249.8	21.8	21.8	
20	70.3	160.0 130.0	0.8		128.01	112.0	240.0		70.3	169.7	168.2	238.5	-15	00	212
5	_	_	_		160.0	124.0	284.0		87.3	196.7	168.2	255.6	-28.5	0.0	212
Gava	mutmonth 87.3	mm/month 200.0			mm/month 160.0 128.0 104.0 70.0 62.5	mm/month 124.0 112.0 124.0 120.0 124.0 120.0 124.0 128.0 124.0 120.0 124.0 120.0 124.0	mn/month 264.0 240.0 228.0 190.0 176.5 158.5 160.5 184.9 197.0 244.0 260.0		mmmonth 87.3 70.3 61.6 35.9 37.9 31.7 25.0 27.0 42.2 51.6 80.2 63.0	mm/month 196.7	mm/month 168.2	mm/month 255.5	mm/month	mm 0.0 0.0 27.8 39.9 69.6 111.0 134.7 145.0 156.5 134.3 122.7 29.9	-
					ExC	0	(ET + B)			(ET + 8) - P	H/12	(I + J)	1/b +1/LFT +B1 mm/month 28.5 -1.5 21.8 18.1 29.6 41.4 23.7 10.3 13.4 -24.2 -11.6		
0	(d)	(E)	Q		(ET)	(8)			(d)	w.	10		(8)		1144
Dave in month	Precipitation	Evaporation	Croo factor	Outputs	Evapotranspiration	Percolation	Outputs	Imputs	Precipitation	Possible Effluent Irrigation	Actual Fillisent Production	Inouts	Strate	Crumping Strenge	ALE DID BAINERING

(V X L) / 1000 Morse McVey & Associates Pty Ltd

S

158.5

365 X O/ / H Largest M

gation Are: Storage Buxton 5(1015).qpw

Morse McVey

Morse McVey

Table A2 : Nominated Irrigation Area Method Water Balance and Wet Weather Storage Calculations

Buxton Rainfall Station: Expected Wastewater Quantity: 5 bedroom/7 person at 145L per person

Wastewater Management Report

1015 litres/day

1015 litres/day Expected wastewater

sign Wastewater Flow	(<u>o</u>)	I/day	1015
esign Percolation Rate	(R)	mmhwk	28
Land Area	(ר)	square metres	260

Parameter	Symbols	Formula	Units	Jan	Feb	Mar	Apr	May	un	24	Aug	Sep	00	Nov	Dec	Total
Days in month	(0)		days	31	28	31	30	31	90	31	31	30	31	30	31	365
Precipitation	(d)		mm/month	87.3	70.3	81.6	38.9	37.9	31.7	25.0	27.0	42.2	51.6	80.2	63.0	897.2
Evaporation	(E)		mm/month	200.0	160.0	130.0	100.0	75.0	55.0	65.0	87.0	110.0	150.0	175.0	250.0	1557.0
Crop factor	(C)			0.8	0.8	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.8	0.8	0.8	
Inputs																

Inputs																
Precipitation	(d)		mm/month	87.3	70.3	81.6	38.9	38.9 37.9	31.7	25.0	27.0	27.0 42.2	51.6 80.2 63.0	80.2	63.0	897.2
Effluent Irrigation	S	(d×D)/L	mm/month 125,9 113.7 125.9 121.8 125.9 121.8 125.9 121.8 125.9 121.8 125.9 121.8 125.9 121.8	125,9	113.7	125.0	121.8	125.9	121.8	125.9	125.9	121.8	125.9		125.9	1481.9
Inputs		(M + d)	mm/month 213.2 184.0 207.5 161.7 163.8 153.5 150.9 152.9 164.0 177.5 202.0 188.9	213.2	184.0	207.5	161.7	163.8	153.5	150.9	152.9	164.0	177.5	202.0	188.9	2119.6
Outputs																
vapotranspiration	(ET)	ExC	mm/month	160.0	128.0	104.0	70.0	70.0 52.5 38.5		45.6	60.9	0.77	120.0	140.0	200.0	1196.4
Percolation	(8)	(R/7)×D	mm/month 124.0 112.0 124.0 120.0 124.0 120.0 124.0 120.0 124.0 120.0 124.0 120.0	124.0	112.0	124.0	120.0	124.0	120.0	124.0	124.0	120.0	124.0	120.0	124.0	1460.0
Outputs		(ET + B)	mm/month 284.0 240.0 228.0 190.0 176.5 158.5 169.5 184.9 197.0 244.0 260.0	284.0	240.0	228.0	190.0	176.5	158.5	169.5	184.9	197.0	244.0	260.0	324.0	2656.4
Storage	(S)	(P +W)-(ET +B) mm/month -70.8 -56.0 -20.5 -28.3 -12.7 -5.0 -16.6 -32.0 -33.0 -66.5 -58.0	mm/month	-70.8	-58.0	-20.5	-28.3	-12.7	-5.0	-18.6	-32.0	-33.0	-68.5		-135.1	
umulative Storade			mm	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

0.0 E cu Largest M (V X L) / 1000 S Storage

Buxton 5(1015).qpw

P0036701-R-01.wpd

Morse McVey & Associates Pty Ltd

31

1

Table A3 : Balancing Table

 \bigcirc

Ó

		20		_	-
		Maximun Number o	Jun	8	
		Nu N	May	8	
			Apr	31	
			Mar	31 26 30 31 30	
			Feb	28	
	liday	Vday	nel,	31	
Buxton	1015	1015	irrigation Jan Feb Mar Apr May Jun	(m ²)	
Rainfall Station: Expected Wasetwater	quantity: 5 bedroom/7 person at 145L per person	Expected Wasetwater			

2			_	_	_	_	_	_	-
	Annual Storage (m ³)	29.1	14.0		14.0	14.0	14.0	0.0	
	31 Dec	171	167	157	157	157	167	126	
days	Nov 30	166	152	152	162	162	152	122	
July 31	31 Oct	171	157	151	157	157	157	128	
	Sep 30	166	152	152	152	152	152	122	
Maximum storage month: Number of days in month:	Aug 31	171	157	152 157 157 152 157	157	157	157	126	
m stor of day	Jul 31	171	152 157	157	152 157 152 157	157	152 157 157	126	
mber	5	166	152	152	152	152 157	152	122	
Nu	Mary 30	166	152	152	152		152	122	
	a Apr	171	162 157 152		157	157	157	126	
	Mar 30	186	162	152	152	152	152	122	
	Feb 28	155	142	142	142	142	142	114	
Vday	ing is	171	157	157	157	157	157	126	
1015	Irrigation Area (m ²)	184	200	200	200	200	200	250	

Morse MoVey & Associates Pty Ltd

P0036701-R-01.wpd

Wastewater Management Report

Morse McVey & Associates Pty Ltd

Table A4 : Nutrient Balance

1015 Vday 1015 liday Buxton Expected Wastewalar Quantity: 5 bedroom/7 person at Rainfall Station: 1451 per person

Expected wastewater

Nitrogen Balance

The formula used to determine area requirements based on organic matter and ruthent loads is as follows

Determine the amount of phosphorus that can be absorbed without reaching over 50 years.

Phosphorus Loading

A= C<u>x G</u> L

Whore:

A = Land area (m²)

Determine the arrount of vegetation uptake over 50 years.

Paracoos = 12320 x 1/2 = 8160 kg/ha = 0.816 kg/m²

Pupuese = 3 × 365 × 50 = 54 750 mg/m² = 0.055 kg/m²

C = Concentration of nutrient or BOD (mg/) = 20 mg/

Q = freated wastewater flow rate (Vd) = 1015 Vd

 $L_x = critical loading rate of nutrient or BOD (mg/m²/d) = 25 mg/m²/d$

Nitrogen Loading

812 m² minimum area for lotal nitrogen ∦ •₹

P_{genericat} = 101ai phosphorus concentration x volume of wastewater

C ж Concentration of phosphorus (mg/l) = 12 mg/l

Determine the amount of phosphorus generated over that time.

Irrigation area = Prenerane/(Preverted + Puptere) = 331 m³

Buxton 5(1015) qpw

+ . - ()

:) ·

Appendix C - Soil Borelogs

				Engineering Log, Exc	avau	ons			
Morse	McVey	& As	sociate	es Pty Ltd			Job	Nº: 036	039
Client:	Mr M	ichael Av	vinou				Date	excavated:	28/3/03
Project	subd	vision -	Hawthorn	e Rd, Bargo			Logge	ed by:	Adam Bishop
							Datur		
Pit locatio	on: refer	Site Plan					Slope	(%):	< 5
Excavation d	dimensions:	length:		width: orientation:		RL surfac	28	Test Pi	t Nº 1
Method	Sampling / testing	Depth (m)	Graphic log	Material description	Moisture	Consist.y / strength		Remarks	
ES				Dark brown loarn topsoil, moderately pedal, good organic matter	D		many roots		
		_	Careford Constants	content					
		-	and the second	Reddish brown light clay subsoil, weak to moderate pedality, slight	мм				
		0.5		grey mottling towards base					
			10 and						
		-	Soft.				platy shale horizon at 0.	8 m	
		-		Pale grey medium to heavy clay, strongly pedal, < 10% coarse	мм		1. I.		
		1.0		fragments	DOI NO				
		_							
		-							
		1.5							
				Layer continues					
		_							
		-							
		2.0							
								Test Pi	+ NI2 2
Excavation di	Sampling	length: Depth	Graphic	width: orientation: Material description	Moisture	RL surfac	0	Remarks	
ES	/ testing	(m)	log	Brown loam topsoil, moderate to strong pedality, no coarse fragments	D	/ strength	many roots		
				arown sount topson, motorials to accing podulity, no occur magnitume			10013		
				Light orangish brown clay loarn subsoil, weak to moderate pedality,	мм				
		0.5	English a	no coarse fragments					
			STRUCTURE .						
		0.5							
			-00720050055AV	Mottled red and grey light clay, weak to moderate pedality,	мм				
			-00720050055AV	Mottled red and grey light clay, weak to moderate pedality, no coarse fragments	мм				
					мм				
			r I	no coarse fragments					
		 	r I	no coarse fragments Light grey heavy clay with some red mottling, weakly pedal, no					
			r I	no coarse fragments Light grey heavy clay with some red mottling, weakly pedal, no					
		 	r I	no coarse fragments Light grey heavy clay with some red mottling, weakly pedal, no					
		 	r I	no coarse fragments Light grey heavy clay with some red mottling, weakly pedal, no					
		<u>10</u> <u>15</u>	r I	no coarse fragments Light grey heavy clay with some red mottling, weakly pedal, no					
		 	r I	no coarse fragments Light grey heavy clay with some red mottling, weakly pedal, no coarse fragments					
Method		<u>10</u> <u>15</u>	r I	no coarse fragments Light grey heavy clay with some red mottling, weakly pedal, no coarse fragments Key	мм	/ strength			
	ral exposure	<u>10</u> <u>15</u>	r I	no coarse fragments Light grey heavy clay with some red mottling, weakly pedal, no coarse fragments Key <u>Sampling/testing</u>	MM Consistency	(/ strength soft	Fð	friable	
N natur A hand	auger	<u>10</u> <u>15</u>	r I	no coarse fragments Light grey heavy clay with some red mottling, weakly pedal, no coarse fragments Key Sampling/testing HP hand penetrometer test (kPa) DCP dynamic cone penetrometer test (blows/150 mm)	MM Consistency VS very S soft	soft	VL	very loose	
N natur A hand ES excav	auger vation, shovel	10 15 20	r I	no coarse fragments Light grey heavy clay with some red mottling, weakly pedal, no coarse fragments Key Sampling/testing HP hand penetrometer test (kPa) DCP dynamic cone penetrometer test (blows/150 mm) O other	MM Consistency VS very S soft F firm	soft	VL L	very loose loose	
N natur A hand ES excav EB excav	auger vation, shovel vation, backho	10 15 20	r I	no coarse fragments Light grey heavy clay with some red mottling, weakly pedal, no coarse fragments Key Sampling/testing HP hand penetrometer test (kPa) DCP dynamic cone penetrometer test (blows/150 mm) O other	MM Consistency VS very S soft F firm S1 stiff	rsoft	VL	very loose loose medium den	58
A hand ES excav EB excav ED excav	auger vation, shovel	10 15 20	r I	no coarse fragments Light grey heavy clay with some red mottling, weakly pedal, no coarse fragments Key Sampling/testing HP hand penetrometer lest (kPa) DCP dynamic cone penetrometer test (blows/150 mm) O other Moisture condition	MM Consistency VS very S soft F firm SI stiff	soft	VL L MD	very loose loose	58
N natur A hand ES excav EB excav ED excav EG excav G guily	auger vation, shovel vation, backho vation, buildoz	10		no coarse fragments Light grey heavy clay with some red mottling, weakly pedal, no coarse fragments Key Sampling/testing HP hand penetrometer test (kPa) DCP dynamic cone penetrometer test (blows/150 mm) O other Moisture condition	MM Consistency VS very S soft F firm SI stiff VSt very H hard	soft stiff The classifica	VL L MD D	very loose loose medium den dense very dense criptions are ba	sed on

Comments: This log must be read with the accompanying explanation sheets and report by Morse McVey & Associates Pty Ltd

Rev 0, 6/00

. . . .

Morse N	IcVey	& As	sociate	es Pty Ltd			Job Nº: 036039
Client:		chael Av	and the local division of the local division				Date excavated: 28/3/03
Project	subdiv	vision -	Hawthorn	e Rd, Bargo			Logged by: Adam Bish
							Datum:
Pit location:	refer \$	Site Plan					Slope (%): < 5
Excavation dim	ancione:	length:		width: orientation:		RL surfac	e Test Pit № 3
Mathead	Sampling	Depth	Graphic	Material description	Moisture	Consist.y	Remarks
ES	/ testing	(m)	log	Dark brown loam topsoil, no coarse fragments, weakly pedal	D	/ strength Fb	
6.5		_					
				Light greyish brown medium/heavy clay subsoil, weakly pedal,	D	St	
				no coarse fragments			
		0.5					
		-					
		-		Mottled light grey and brown medium/heavy clay, weakly pedal,	мм	St	
		-	and a	no coarse fragments			
		1.0		•			
			Section 1				
		_		Test pit terminated in fine sandstone bedrock			
		-					
		1.5					
		1.5					
		·					
							-
		20					
Excavation dim	ensions:	length:		width: orientation:		RL surfac	Test Pit № 4
	Sampling / testing	Depth (m)	Graphic log	Material description	Moisture	Consist.y	Remarks
ES			SCHOOL STREET,	Brown loarn topsoil, strongly pedal, no coarse fragments,	D	S/Fb	
		-	Contraction of the				
		-	18 S 1	Light brown light clay, minor mottling - red and grey, moderately			Stone layer at 0.25 m, fine sandstone
		0.5		pedal, 20% coarse fragments, many roots, well drained			
		0.0					
				Light grey/white medium clay, red mottles, weakly pedal, 30%			
				coarse fragments,			
		1.0					·
		-					
		-					
		1.5					
		-					
		-					
		20					
		2.0		Кеу			
Method				Sampling/testing	Consistenc		
N natural	exposure			HP hand penetrometer test (kPa)		y soft	Fb friable
A hand a				DCP dynamic cone penetrometer test (blows/150 mm)	S soft		VL very loose
	tion, shovel			0 other	F firm St stiff		L loose MD medium dense
	tion, backhi tion, bulldo:			Moisture condition		y stiff	D dense
	tion, grader			D dry	H har		VD very dense
G guily				MM moderately moist			ation symbols and soil descriptions are based on
	rbed core s	ample 50 m	m diameter	M moist		he Unified So	Il Classification System (Corps of Engineers, 1953)
0 010000							
0 other				W wet	1	and AS	1726-1993, Geotechnical Site Investigations

Client: Project	Norse McVey & Associates Pty Ltd Job Nº: 036039							
Project	Client: Mr Michael Avinou			Date excavated: 28/3/03				
	ect subdivision - Hawthome Rd, Bargo			ne Rd, Bargo			Logged by: Adam Bishor	
							Datum:	
Pit location	n: refer	Site Plan					- Slope (%): < 5	
		leasth				RL surfac	Test Pit № 5	
xcavation din	Sampling	length: Depth	Graphic	width: orientation.	Moisture	Consisty		
Method	/ testing	(m)	log	Material description	condition	/ strength	Remarks	
S		-		Light grey/brown topsoil, loarn fine sandy, weakly pedal, 10% coarse	D			
		-		fragments				
		-		Orangish brown light/medium clay subsoil, weakly pedal, 10-20%	мм			
		0.5	1	coarse fragments				
			and the second				ironstone layer at 0.6 to 0.8 m	
		-						
		-	A LANGER	Pale grey medium clay, minor red mottling, 50% coarse fragments	мм			
		1.0		(ironstone),				
		1.0						
				Layer continues				
		15		n n n n n n n n n n n n n n n n n n n				
		-						
		-						
		-						
		2.0						
Tent Did N/2 G								
	Sampling	length: Depth	Graphic		Moisture	Consist.y	Remarks	
	/ testing	(m)	log	Material description	condition	/ strength		
6		-		Blackish brown clay loarn topsoil, weakly pedal, no coarse fragments	мм		moist profile	
		-		Orangish brown light clay subsoil, structure not evident, no coarse	мм		thin A2 horizon at 0.25 m	
		-	1832.4	fragments, mottled grey towards base				
		0.5						
		_	-					
		_						
		-		Light grey sandy clay, structure not evident, no coarse fragments	w			
		1.0						
		1.0						
		_		ironstone layer at 1.1 m			free water at 1.1 m	
		1.5						
		-						
1		-						
		2.0						
				thod Sampling/testing Consistency / strength				
thod					Consistency	/ strength		
	al exposure			Sampling/testing	Consistency VS very		Fb friable	
natura hand a	auger			Sampling/testing I HP hand penetrometer test (kPa) I DCP dynamic cone penetrometer test (blows/150 mm) I	VS very S soft		VL very loose	
natural hand a excava	auger ation, shovel			Sampling/testing 9 HP hand penetrometer test (kPa) 9 DCP dynamic cone penetrometer test (blows/150 mm) 9 O other 1	VS very S soft F firm		VL very loose L loose	
naturai hand a excava excava	auger ation, shovel ation, backho	90		Sampling/testing H HP hand penetrometer test (kPa) H DCP dynamic cone penetrometer test (blows/150 mm) H O other H	VS very S soft F firm St stiff	soft	VL very loose L loose MD medium dense	
naturai hand a excava excava excava	auger ation, shovel ation, backho ation, bulidoz	er blade		Sampling/testing 9 HP hand penetrometer test (kPa) 9 DCP dynamic cone penetrometer test (blows/150 mm) 9 O other 9 Moisture condition 9	VS very S soft F firm St stiff VSt very	stiff	VL very loose L loose MD medium danse D dense	
naturai hand a excava excava excava excava	auger ation, shovel ation, backho	er blade		Sampling/testing Image: Sampling testing Image: Sampling testi	VS very S soft F firm St stiff VSt very H hard	soft stiff	VL very kose L kose MD medium dense D dense VD very dense	
naturai hand a excava excava excava excava gulty	auger ation, shovel ation, backho ation, bulidoz	xe ter blade	m diameter	Sampling/testing 9 HP hand penetrometer test (kPa) 9 DCP dynamic cone penetrometer test (blows/150 mm) 9 O other 9 Moisture condition 9	VS very S soft F firm St stiff VSt very H hard	soft stiff	VL very kose L kose MD medium dense D dense	
naturai hand a excava excava excava excava gulty	auger ation, shovel ation, backho ation, bulidoz ation, grader	xe ter blade	m diameter	Sampling/testing Intervention Intervent	VS very S soft F firm St stiff VSt very H hard	soft stiff The classifica a Unified Soil	VL very loose L loose MD medium dense D dense VD very dense ation symbols and soil descriptions are based on	

Engineering Log, Excavations

Appendix D - Soil Laboratory Test Results

Department of Lands

SOIL TEST REPORT

Page 1 of 2 Scone Research Service Centre **REPORT NO:** SCO03/097R1 Adam Bishop **REPORT TO:** Morse McVey & Associates **PO Box 138** Picton 2571 Six soil samples **REPORT ON:** Hawthome Road, Bargo PRELIMINARY RESULTS Not issued ISSUED: Final **REPORT STATUS:** DATE REPORTED: 15 April 2003 Information on test procedures can be obtained from Scone METHODS: **Research Service Centre** TESTING CARRIED OUT ON SAMPLE AS RECEIVED. THIS DOCUMENT MAY NOT BE REPRODUCED EXCEPT IN FULL.

goto loven.

G. Holman (Technical Officer)

> Gundy Road Scone NSW 2337 P.O. Box 283 Scone NSW 2337 DX 4206 Telephone (02) 65451668 Facelmile (02)65452520

()

()

SOIL AND WATER TESTING LABORATORY Scone Research Service Centre

> Report No.: Client Reference:

SCO03/097R1 Adam Bishop Morse McVey & Associates PO Box 138 Picton 2571

Leb. No.	Method		CSA3 CEC	& exchang	cable cation	CSA/3 CEC & exchangeable cations (me/100g)		C8B/1	
	Sample Id.	CEC	Na	К	U	Mg	٧	P sorp (mg/kg)	P sorp index
-	Bargo Site I layer 1	12.7	0.3	2.0	3.5	3.2	1.4	791	53
2	Bargo Sile I layer 2	16.4	0.4	0.3	0.9	3.5	6.0	846	6.5
3	Bargo Site 3 layer 2	18.5	£.0	0.5	0.9	6.2	S.4	860	6.4
4	Bargo Silc 3 layer 3	18.2	6.3	0.4	0.5	4.4	6.8	772	5.3
s	Bargo Sile 5 layer 1	1.7	0.1	0.5	1.9	1.4	0.7	552	3.7
0	Bargo Site 5 layer 3	15.8	0.4	63	1.1	2.7	6.8	603	4.0

いとううろう

END OF TEST REPORT

Page 2 of 2

P0036701-R-01.wpd

1 . .

.

Appendix E - Irrigation Options

A general discussion of the various irrigation types for secondary treated effluent follows.

Semi-Fixed Spray Irrigation

If spray irrigation is used we recommend a semi fixed, surface spray, irrigation system (Standard Drawing W3). A semi fixed irrigation system confines sprinklers to suitable irrigation fields and will ensure reasonably even and widespread distribution of the effluent if properly used. The system should contain the following:

- (i) a fixed and buried main distribution line/s to transfer effluent from the tanks to the nominated irrigation field;
- (ii) a series of take-off points (stand-pipes) spaced evenly within the irrigation field. These takeoff points may be quick release valves or as recommended by an irrigation expert. In this case, at least two take-off points should be provided, per field, and should be spaced at least 10 metres apart; and
- (iii) a minimum of two flexible, moveable, irrigation lines, each line having three sprinklers. These can be easily connected, detached and moved between the different take-off points and fields, to service different areas.

In total the irrigation system will comprise no less than six sprinklers. The lines and sprinklers should be switched and moved regularly to ensure even and widespread application of effluent throughout the entire irrigation area. This is very important to ensure long term sustainability of the irrigation area. The setup of the main distribution line and flexible lines must be designed to ensure that the recommended buffer distances described below are not compromised.

Subsurface Irrigation

 \bigcirc

()

Subsurface irrigation (Standard Drawing W4) is suitable on this site and offers the advantage of reduced buffers from residences. Subsurface irrigation involves the installation of a series of buried (approx. 0.1 m deep), roughly parallel, drip irrigation lines (approx. 13-16 mm diameter and 1.0 m apart) containing pressure compensated emitters (typically 0.6 to 1.0 m spacing). A filter, vacuum breaker valves and flushing valves are installed to improve the performance and longevity of the system.

Irrigation lines should be flushed approximately yearly according to the installer's recommendations. This should be done during periods of fine weather when the threat of runoff is low. The effluent filter should be cleaned about every two months. The irrigation area must not be subject to high traffic movement, to avoid compaction around emitters.

Fixed Spray Irrigation

Fixed spray irrigation involves fixed and buried distribution lines, with a series of fixed sprinklers. Generally pop-ups are the preferred type of sprinkler as they allow the area

to be easily mowed without the risk of damaging the sprinkler head. The sprinklers should be spaced so as to evenly service the entire irrigation area. They should produce a coarse droplet to avoid spray drift, and have a plume height less than 400mm and a plume diameter less than 4 metres.

Surface Drip/Trickle Irrigation

Surface drip/trickle irrigation involves laying pressure compensated drip lines or leaky pipe within garden beds, and covered with mulch, pine bark or other surface covering. In larger garden beds several separate lines may be needed, and a series of manual or automatic switching valves should be used to select the desired area for irrigation. Because this method is often used to service relatively small areas, the irrigation design must ensure that such areas are not proportionally over-serviced.

Morse McVey

P0036701-R-01.wpd

: . .

Wastewater Management Report

Appendix F - Laundry Product Research (Lanfax Laboratories, Armidale)

Phone Office/Lab (02) 6775 1157 Fax (02) 6775 1043 ABN: 72 212 385 096 email: lanfax.labs@science.com.au Website: http://www.lanfaxlabs.com.au 493 Old Inverell Road (P.O. Box W90) Armidale NSW 2350 Director: Dr Robert Patterson CPSS, CPAg, FIEAust Soil Scientists and Environmental Engineers

LAUNDRY PRODUCTS RESEARCH

The data, from which the graph on the reverse of this page was produced, were from research financed and undertaken by Lanfax Laboratories in July 1999, independent of any other organisation.

A range of laundry products was purchased from the local supermarkets comprising 20 liquid and 40 powder products. The selection covered the major brands, as determined from previous research, but included some lesser known brands, and five dishwashing detergents.

For each of the detergents, the mass of a 40 mL freshly poured sample was determined. Using the manufacturers' recommended loading rates for an average wash in a top loading automatic washing machine, an equivalent weight of each product was mixed with water from a rainwater system to represent the recommended dose of product with the full water load, that is, 160 litres of wash, rinse, deep rinse and spin cycle.

The samples were shaken for 1 hour at room temperature and the concentration of each of the elements of interest determined at the University of New England using an Inductively Coupled Plasma (ICP). Other chemical properties were measured by Lanfax Labs.

Other information from the research is available at our web site

www.lanfaxlabs.com.au/publications.html

PATTERSON, R.A. (2000). *Water Quality Relationships with Reuse Options*. in 3rd International Symposium on Waste Water Reclamation, Recycling and Reuse. 3-5 July 2000. Paris France. International Water Association .Preprint Book 8, pp 205-212.

and

PATTERSON, R.A. (1999) *Reuse Initiatives Start in the Supermarket*. NSW Country Convention. Institution of Engineers Australia. 6-8 August 1999. Northern Group, Institution of Engineers Australia, Armidale.

)d

Figure 1. Ranking of laundry products according to sodium concentration with phosphorus concentration shown as tail. Ideal choice for on-site systems is one with a low sodium and a low phosphorus concentration.

DCopyright Lanfax Laboratories Armidale Dr Robert Patterson

Morse Mevey

P0036701-R-01.wpd

. . . .

APPENDIX G – Vegetation Suitable for Land Application Areas (taken from DLG, 1998)

.....

 \bigcirc

()

Botanical Name	Approximate Height	Common Name or Variety		
Grasses				
Carex spp. Lomandra longifolia Microlaena stipoides Oplismenus imbicillis Pennisetum alopecuroides Poa lab Stipa spp.	40 - 80 cm	Available as lawn turf		
Ground cover / Climbers				
Hibbertia scandens		Snake Vine		
Hibbertia stellaris Isotoma fluviatalis Kennedia rubicunda Scaevola albida Scaevola ramosissima	Prostrate Climber	Dusky coral pea		
Veronica plebeia Viola hederacea		Native violet		
Sedges / Grasses / Small Plants				
Anigozanthus flavidus Baumea acuta Baumea articulata Baumea juncea Baumea nuda Baumea rubiginosa Baumea teretifolia Blandfordia grandifora Blandfordia nobilis Brachyscome diversifolia Carex appressa Cotula coronopifolia Crinum pedunculatum Cyperus polystachyos Dianella careulea Epacris microphylla Ferns	2m Sedge Sedge Sedge Sedge 30-90cm Clump Sedge 10-20cm <2m Sedge Low plant 50cm to 1m	Kangaroo Paw Christmas Bell Christmas Bell Native Daisy Waterbutton Swamp Lily Blue Flax Lily		
Ferns Gahnia spp. Juncus spp. Lobelia trigonocaulis Lomandra spp. Patersonia fragilis Patersonia glabrata	Tall Grass 0.5m Rush 5-10cm Grass	Native Iris Native Iris		

Wastewater Management Report

Botanical Name	Approximate Height	Common Name or Variety
Patersonia occidentalis	5cm	Native Iris
Ranunculus granditicola	Reed	-
Restio australis	1m	
Resito tetraphyllus	Sedge	
Sowerbaea juncea	<30cm	Rush Lily
Tetratheca juncea	<1m	
Xyris operculata		Tall Yellow Eye
Shrubs		
Agonis flexuosa nana	-	60
Baekea linifolia	1-2.5m	
Baekea utilis	1-2.5m	
Baekea virgata	<4m	
Banksia aemula	1-7m	
Banksia robur	0.5-2m	
Bauera ruboides	0.5-1.5m	
Callistemon	2-3m	Burgundy
Callistemon	2-4m	Eureka
Callistemon	3-4m	Harkness
Callistemon	3-4.5m	Kings Park Special
Callistemon	2-3m	Mauve Mist
Callistemon	1-2.5m	Red Clusters
Callistemon	2-3m	Reeves Pink
Callistemon citrinus	50-80cm	Austraflora Firebrand
Callistemon citrinus	2-4m	Splendens
Callistemon citrinus	60cm-1m	White Ice
Callistemon linearis	1-3m	
Callistemon macropunctatus	2-4m	
Callistemon pachyphyllus	2-3m	
Callistemon pallidus Callistemon paludosus	1.5-4m 3-7m	
Callistemon pinifolius	1-3m	
Callistemon rigidus	1.5-2.5m	
Callistemon salignus	3-10m	
Callistemon shiresii	4-8m	
Callistemon sieberi	1.5-2m	
Callistemon sieberi	50-80cm	Austraflora Little Cobber
Callistemon subulatus	1-2m	
Callistemon viminalis	1-2m	Captain Cook
Callistemon viminalis	5-10m	Dawson River
Callistemon viminalis	3-5m	Hannah Ray
Callistemon viminalis	50cm-1m	Little John
Callistemon viminalis	1.5-2m	Rose Opal
Callistemon viminalis	2-3m	Western Glory
Goodenia ovata	1-1.5m	,
libiscus diversifolius	1-2m	Swamp hibiscus
unzea capitata	1-2m	
eptospermum flavescens	<2m	Tea-Tree
eptospermum juniperinum	1m	Tea-Tree

P0036701-R-01.wpd

1

.....

 \bigcirc

 \bigcirc

Wastewater Management Report

Botanical Name	Approximate Height	Common Name or Variety
Leptospermum lanigerum	1-2m	Woolly tea-tree
Leptospermum squarrosum	<2m	T ea-Tree
Melaleuca alternifolia	4-7m	
Melaleuca decussata	1-2m	Cross-leaved honey myrtle
Melaleuca lanceolata	4-6m	,,
Melaleuca squamea	1-2m	2 A A
Melaleuca thymifolia	>2m	
Trees		
Acacia elongata	2-4m	
Acacia floribunda	5-6m	Gossamer wattle
Agonis flexuosa	1.5m	Willow myrtle
Allocasuarina diminuta	0.5-5m	
Allocasuarina paludosa	Large tree	
Angophora floribunda	Large tree	
Angophora subvelutina	<4m	
Callicoma serratifolia	10-30m	
Casuarina cunninghamiana	6-12m	River she-oak
Casuarina glauca	Large tree	Swamp oak
Elaeocarpus reticulatis	Large tree	Blueberry ash
Eucalyptus amplifolia	10-30m	Cabbage gum
Eucalyptus botryoides	15-20m	ouccuge guin
(coastal areas)		
Eucalyptus camaldulensis	Large tree	River red gum
(west of ranges)		
Eucalyptus deanei	Large tree	Blue Mountains blue gum
Eucalyptus elata		River Peppermint
Eucalyptus grandis	10-20m	Flooded gum
Eucalyptus longifolia	20m	Wollybutt
Eucalyptus pilularis	30-40m	Blackbutt
Eucalyptus punctata	<35m	Greygum
Eucalyptus robusta	20-30m	Swamp mahogany
Eucalyptus saligna	30-50m	Sydney blue gum
Eucalyptus tereticornus	30-40m	Forest red gum
Eucalyptus viminalis (ranges)	20-40m	Ribbon gum
Acmena smithii	10-20m	Lilli Pilli
Flindersia australis	<40m	Native teak
lymenosporum flavuum	3-6m	Native frangipane
Melaleuca armillaris	3-4m	Bracelet honey myrtle
Melaleuca decora	4-7m	,,
Aelaleuca ericifolia	6m	
Aelaleuca halmaturorum	4-6m	
Aelaleuca hypericifolia	2-3m	
Aelaleuca linariifolia	4-8m	Snow in summer
lelaleuca quinquenervia	5-7m	Broad paperbark
lelaleuca squarrosa	6m	Store paperount
Aelaleuca stypheloides	6-15m	
Aelia azedarach	15-20m	
littosporum spp.	8-10m	

Botanical Name	Approximate Height	Common Name or Variety
Syzgium paniculatum Tristania laurina Viminaria juncea	5-15m 2-3m	Bush cherry Kanuka Golden spray

